Atmospheric Chemistry of Solar and Extrasolar Gas Giants # **Maria Zamyatina** with thanks to the Exoclimatology Theory Group, Robin Baeyens and Julianne Moses Exoclimes VII University of Montreal 8 July 2025 #### **Outline** - Big questions - Some chemical detection firsts with JWST - Sulphur dioxide (SO₂) - What we can learn from SO₂ - Methane (CH₄) - The "missing methane" problem - Chemical networks - Lessons from the Solar System # Big questions - How do planets form? - How do planets get their atmospheres? - How chemically diverse are planetary atmospheres? - What processes affect atmospheric composition? What can the observed atmospheric composition tell us about the past and the present of a planet? ### JWST extrasolar-gas-giant firsts # Why do we care about **sulphur**? S is abundant and of intermediate volatility - tracer for the amount of solid material accreted by planets during their formation - helps distinguish between competing models of planet formation, complementing C, O, Si, Na, Fe <u>Planet formation problem</u>: **S can sublimate into H₂S** at lower temperatures and may **modify planet's S/O** **S** chemistry in H₂-rich atmospheres is **poorly known** - SO₂ is a thermodynamically unstable form of sulfur, because it is highly oxidised - SO₂ detection means that H₂S, a thermodynamically stable form of sulfur, is oxidised to SO₂ - SO₂: tracer for atmospheric dynamics and metallicity of giant planets Feinstein, Booth, Bergner+2025 **ExoAtmospheres Database** Table 4. Sulfur Reaction Rate Coefficient Data Needed for Exoplanet Studies | Need | |-------| | lab | | data! | | Read | ${ m ction}^a$ | | $Notes^b$ | | | | | | |-----------------|-------------------|--|---|--|--|--|--|--| | $S + S_3$ | \longrightarrow | $S_2 + S_2$ | Need data | | | | | | | $S + S_4$ | \longrightarrow | $S_2 + S_3$ | Need data | | | | | | | S + SH | \longrightarrow | $S_2 + H$ | Some data exist; need accurate values and T dependence | | | | | | | $S + HS_2$ | \longrightarrow | $S_2 + SH$ | Sendt et al. (2002); need extension to lower & higher T | | | | | | | S + CO + M | \longrightarrow | OCS + M | † Need low and high pressure limits and their T dependence | | | | | | | S + CS + M | \longrightarrow | $CS_2 + M$ | † Need low and high pressure limits and their T dependence | | | | | | | S + HCS | \longrightarrow | $CS_2 + H$ | † Alzueta et al. (2019) estimate; need confirmation | | | | | | | $S_2 + H + M$ | \longrightarrow | $HS_2 + M$ | Sendt et al. (2002); need confirmation and extension to lower | | | | | | | $S_2 + S_2 + M$ | \longrightarrow | $S_4 + M$ | † Some data exist; need accurate values and T dependence | | | | | | | $S_4 + S_4 + M$ | \longrightarrow | $S_8 + M$ | † Need low and high pressure limits and their T dependence | | | | | | | SH + H | \longrightarrow | $H_2 + S$ | Some data exist; need accurate values and T dependence | | | | | | | SH + H + M | \longrightarrow | $H_2S + M$ | Need low and high pressure limits and T dependence | | | | | | | $SH + S_3$ | \longrightarrow | $HS_2 + S_2$ | Need data | | | | | | | $SH + S_4$ | \longrightarrow | $HS_2 + S_3$ | Need data | | | | | | | SH + SH | \longrightarrow | H ₂ S + S † Some data exist; need accurate values and T depende | | | | | | | | $SH + HS_2$ | \longrightarrow | $H_2S + S_2$ | † Sendt et al. (2002); need extension to lower T | | | | | | | $SH + H_2S_2$ | \longrightarrow | $H_2S + HS_2$ | Sendt et al. (2002); need extension to lower T | | | | | | | SH + CS | \longrightarrow | $CS_2 + H$ | † Alzueta et al. (2019); need confirmation and T dependence | | | | | | | SH + HCS | \longrightarrow | $H_2S + CS$ | Need data | | | | | | | SH + OCS | \longrightarrow | $CO + HS_2$ | † Need data and T dependence | | | | | | | $HS_2 + H$ | \longrightarrow | SH + SH | Sendt et al. (2002); need confirmation | | | | | | | $HS_2 + H$ | \longrightarrow | $H_2 + S_2$ | Sendt et al. (2002); need extension to lower T | | | | | | | $HS_2 + H$ | \longrightarrow | $H_2S + S$ | Sendt et al. (2002); need extension to lower T | | | | | | | $HS_2 + HS_2$ | \longrightarrow | $H_2S_2 + S_2$ | Sendt et al. (2002); need extension to lower T | | | | | | | $HS_2 + CS$ | \longrightarrow | $CS_2 + SH$ | Need data and T dependence | | | | | | | CS + SO | \longrightarrow | $CO + S_2$ | Need data and T dependence | | | | | | | CS + SO | \longrightarrow | OCS + S | Need data and T dependence | | | | | | | HOSO + H | \longrightarrow | products | Need data and product branching ratios | | | | | | | HOSO + O | \longrightarrow | products | Need data and product branching ratios | | | | | | | HOSO + OH | \longrightarrow | products | Need data and product branching ratios | | | | | | | HOSO + S | \longrightarrow | products | Need data and product branching ratios | | | | | | | HOSO + SH | \longrightarrow | products | Need data and product branching ratios | | | | | | | $S_2O + H$ | \longrightarrow | SO + OH | Need data | | | | | | $[^]a$ M represents any third body such as the dominant background gas. b † represents particularly pressing need. Table 4. Sulfur Reaction Rate Coefficient Data Needed for Exoplanet Studies | Many | |-----------| | reactions | | involving | | C-S | | bond | | Read | $ction^a$ | | Notes^b | | | | | |-----------------|-------------------|----------------|---|--|--|--|--| | $S + S_3$ | \longrightarrow | $S_2 + S_2$ | Need data | | | | | | $S + S_4$ | \longrightarrow | $S_2 + S_3$ | Need data | | | | | | S + SH | \longrightarrow | $S_2 + H$ | Some data exist; need accurate values and T dependence | | | | | | $S + HS_2$ | \longrightarrow | $S_2 + SH$ | Sendt et al. (2002); need extension to lower & higher T | | | | | | S + CO + M | \longrightarrow | OCS + M | † Need low and high pressure limits and their T dependence | | | | | | S + CS + M | \longrightarrow | $CS_2 + M$ | † Need low and high pressure limits and their T dependence | | | | | | S + HCS | \longrightarrow | $CS_2 + H$ | † Alzueta et al. (2019) estimate; need confirmation | | | | | | $S_2 + H + M$ | \longrightarrow | $HS_2 + M$ | Sendt et al. (2002); need confirmation and extension to lower T | | | | | | $S_2 + S_2 + M$ | \longrightarrow | $S_4 + M$ | † Some data exist; need accurate values and T dependence | | | | | | $S_4 + S_4 + M$ | \longrightarrow | $S_8 + M$ | † Need low and high pressure limits and their T dependence | | | | | | SH + H | \longrightarrow | $H_2 + S$ | Some data exist; need accurate values and T dependence | | | | | | SH + H + M | \longrightarrow | $H_2S + M$ | Need low and high pressure limits and T dependence | | | | | | $SH + S_3$ | \longrightarrow | $HS_2 + S_2$ | Need data | | | | | | $SH + S_4$ | \longrightarrow | $HS_2 + S_3$ | Need data | | | | | | SH + SH | \longrightarrow | $H_2S + S$ | † Some data exist; need accurate values and T dependence | | | | | | $SH + HS_2$ | \longrightarrow | $H_2S + S_2$ | † Sendt et al. (2002); need extension to lower T | | | | | | $SH + H_2S_2$ | \longrightarrow | $H_2S + HS_2$ | Sendt et al. (2002); need extension to lower T | | | | | | SH + CS | \longrightarrow | $CS_2 + H$ | † Alzueta et al. (2019); need confirmation and T dependence | | | | | | SH + HCS | \longrightarrow | $H_2S + CS$ | Need data | | | | | | SH + OCS | \longrightarrow | $CO + HS_2$ | † Need data and T dependence | | | | | | $HS_2 + H$ | \longrightarrow | SH + SH | Sendt et al. (2002); need confirmation | | | | | | $HS_2 + H$ | \longrightarrow | $H_2 + S_2$ | Sendt et al. (2002); need extension to lower T | | | | | | $HS_2 + H$ | \longrightarrow | $H_2S + S$ | Sendt et al. (2002); need extension to lower T | | | | | | $HS_2 + HS_2$ | \longrightarrow | $H_2S_2 + S_2$ | Sendt et al. (2002); need extension to lower T | | | | | | $HS_2 + CS$ | \longrightarrow | $CS_2 + SH$ | Need data and T dependence | | | | | | CS + SO | \longrightarrow | $CO + S_2$ | Need data and T dependence | | | | | | CS + SO | \longrightarrow | OCS + S | Need data and T dependence | | | | | | HOSO + H | \longrightarrow | products | Need data and product branching ratios | | | | | | HOSO + O | \longrightarrow | products | Need data and product branching ratios | | | | | | HOSO + OH | \longrightarrow | products | Need data and product branching ratios | | | | | | HOSO + S | \longrightarrow | products | Need data and product branching ratios | | | | | | HOSO + SH | \longrightarrow | products | Need data and product branching ratios | | | | | | $S_2O + H$ | \longrightarrow | SO + OH | Need data | | | | | $[^]a$ M represents any third body such as the dominant background gas. b † represents particularly pressing need. S chemistry is affected by C chemistry, and one of the key C species in giant planet atmospheres is CH₄ # Why care about CH₄? - CH₄ is a proxy for metallicity for the solar system giants - CH₄ is a haze precursor - CH₄ depletion as a proxy for the deep atmosphere temperature - CH₄ holds most carbon at low temperatures, while CO dominates at high temperatures - But: CH₄-CO transition is smooth Atreya+18, Welbanks+2019, Sing+2024, JWST GO-3557 Baeyens+2022 Baeyens+2022 Baeyens+2022 #### Lessons from the solar system: ### Phosphine in Jupiter's Great Red Spot - Excess in PH₃ and aerosols coincides with still unidentified red chromophore - Aerosols shield PH₃ from UV in this long-lived anticyclone ### CH₄ depletion due to: Carbon-sulphur chemistry Carbon-sulphur chemistry depletes CH₄ & does it differently in different chemical networks. E.g.: # CH₄ depletion due to: Carbon-sulphur chemistry Carbon-sulphur chemistry depletes CH₄ & does it differently in different chemical networks. E.g.: #### Aside: # Families of chemical networks for giant planets | Last updated | С | Н | Ο | Ν | S | Р | CI | Model | Species | Notes | |---------------------------|----------|----------|----------|----------|----------|----------|----|-----------|---------|--| | Moses+2013 | V | V | V | V | X | X | X | KINETICS | 92 | originally developed for solar system | | Hu+2015 | V | V | V | V | V | X | X | MEAC | 111 | originally developed for rocky exoplanets | | Gao+2016,
Johnson+2022 | V | V | V | V | V | × | X | EPACRIS | varies | computer-aided chemical reaction network generator | | Hobbs2021 | V | V | V | V | V | X | X | LEVI | a lot | STAND | | Tsai+2021 | V | V | V | V | V | X | X | VULCAN | 96 | open source, widely used | | Tsai+2022 | V | V | V | V | X | X | X | Exo-FMS | 12 | MINI-CHEM | | Lee+2024 | X | V | V | X | X | V | X | VULCAN | 32 | phosphorus | | Wogan+2024 | V | V | V | V | V | X | V | Photochem | 111 | Zahnle, chlorine | | Veillet+2025 | V | V | V | V | V | X | X | FRECKLL | 226 | verified against combustion experiments | New laboratory & ab initio data are needed! ### CH₄ depletion due to: **Cloud formation** - Kinetic cloud formation model - Cycling between surface reactions of cloud bulk growth: Depletion via: CH₄ + $$\mathbf{H} \rightarrow \text{CH}_3 + \text{H}_2$$ CH₃ + $\mathbf{H} \rightarrow \text{CH}_2 + \text{H}_2$ CH₂ + $\mathbf{H} \rightarrow \text{CH} + \text{H}_2$ CH + H₂O \rightarrow H₂CO + H CH₄ changes largest at <10⁻³ bar and ~1300 K # CH₄ depletion due to: Cloud formation #### Lessons from the solar system: Storm-driven NH₃ depletion on Jupiter Observation: NH₃ depletion correlates with enhanced lightning activity #### From a press release: "Imke and I both were like, 'There's no way in the world this is true," said Moeckel, ... "So many things have to come together to actually explain this, it seems so exotic. I basically spent three years trying to prove this wrong. And I couldn't prove it wrong." #### Lessons from the solar system: Storm-driven NH₃ depletion on Jupiter - Observation: NH₃ depletion correlates with enhanced lightning activity - Theory: NH₃ vapour helps melt H₂O ice crystals at low temperatures (-85C), forming H₂O-NH₃ mushballs - net effect: downward transport of NH₃ Likely happens on all solar and colder extrasolar giants! # CH₄ depletion due to: # Transport-induced quenching # CH₄ depletion due to: # Transport-induced quenching # CH₄ depletion due to: # **Transport-induced quenching** Tsai+2023 # CH₄ depletion due to: Transport-induced quenching GCM with disequilibrium thermochemistry CH₄ depletion due to: Transport-induced quenching **GCM** with disequilibrium **Temperature Zonal wind** thermochemistry 90° 102 Kinetics [M/H]=0 ₹ 10³ Chemical scheme: ---- Equilibrium 105 105 — Kinetics 10^{3} Metallicity: [M/H]=0 Latitude Pressure [Pa] 104 -- [M/H]=1 Meridional mean: — Morning Evening All latitudes: quench Morning -90° -90° 10x Evening 90° 10² 107 level Kinetics [M/H]=1 10³ - 10³ 10² J 105 10³ atitude 9 Pressure [Pa] 105 106 -90° 600 800 1000 1200 1400 1600 1800 2000 -6.0 -4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 10-11.0010-9.71 10-8.43 10-7.14 10-5.86 10-4.57 10-3.29 10-2.00 Temperature [K] Zonal wind speed [km s⁻¹] 107 CH₄ mole fraction 10^{-12} 10-10 10^{-8} 10^{-6} 10^{-4} 10^{-2} Zamyatina+2024 CH₄ mole fraction #### Summary of: # **Transport-induced quenching** - Quenching homogenisation of gas-phase composition by wind - CH₄ is readily homogenised - CH₄ is enhanced or depleted depending on where it quenches - CH₄ could be more depleted if it quenches inside the region of fast equatorial winds #### Implication: Be careful when using CH₄ depletion as a deep atmosphere thermometer ### Summary - Ever increasing wealth of chemical species detections allows for a detailed study of atmospheric processes - Keep moving from "just detections" to processes - Keep increasing the complexity of disequilibrium chemistry models - "Atmospheres are not simple, one-dimensional constructs", they are a highly coupled but beautiful mess - Sulphur story is unraveling and there is more to come - Keep reporting non-detections - CH₄ non-detections could be caused by photochemistry, C-S coupling, cloud formation, transport-induced quenching likely all together and more - Keep looking at the Solar System when interpreting extrasolar observations - Need more chemical kinetics data