Atmospheric Chemistry of Solar and Extrasolar Gas Giants

Maria Zamyatina

with thanks to the Exoclimatology Theory Group,
Robin Baeyens and Julianne Moses

Exoclimes VII University of Montreal 8 July 2025

Outline

- Big questions
- Some chemical detection firsts with JWST
- Sulphur dioxide (SO₂)
 - What we can learn from SO₂
- Methane (CH₄)
 - The "missing methane" problem
- Chemical networks
- Lessons from the Solar System

Big questions

- How do planets form?
- How do planets get their atmospheres?
- How chemically diverse are planetary atmospheres?
- What processes affect atmospheric composition?

What can the observed atmospheric composition tell us about the past and the present of a planet?

JWST extrasolar-gas-giant firsts

Why do we care about **sulphur**?

S is abundant and of intermediate volatility

- tracer for the amount of solid material accreted
 by planets during their formation
- helps distinguish between competing models of planet formation, complementing C, O, Si, Na, Fe

<u>Planet formation problem</u>: **S can sublimate into H₂S** at lower temperatures and may **modify planet's S/O**

S chemistry in H₂-rich atmospheres is **poorly known**

- SO₂ is a thermodynamically unstable form of sulfur, because it is highly oxidised
- SO₂ detection means that H₂S, a thermodynamically stable form of sulfur, is oxidised to SO₂
- SO₂: tracer for atmospheric dynamics and metallicity of giant planets

Feinstein, Booth, Bergner+2025

ExoAtmospheres Database

Table 4. Sulfur Reaction Rate Coefficient Data Needed for Exoplanet Studies

Need
lab
data!

Read	${ m ction}^a$		$Notes^b$					
$S + S_3$	\longrightarrow	$S_2 + S_2$	Need data					
$S + S_4$	\longrightarrow	$S_2 + S_3$	Need data					
S + SH	\longrightarrow	$S_2 + H$	Some data exist; need accurate values and T dependence					
$S + HS_2$	\longrightarrow	$S_2 + SH$	Sendt et al. (2002); need extension to lower & higher T					
S + CO + M	\longrightarrow	OCS + M	† Need low and high pressure limits and their T dependence					
S + CS + M	\longrightarrow	$CS_2 + M$	† Need low and high pressure limits and their T dependence					
S + HCS	\longrightarrow	$CS_2 + H$	† Alzueta et al. (2019) estimate; need confirmation					
$S_2 + H + M$	\longrightarrow	$HS_2 + M$	Sendt et al. (2002); need confirmation and extension to lower					
$S_2 + S_2 + M$	\longrightarrow	$S_4 + M$	† Some data exist; need accurate values and T dependence					
$S_4 + S_4 + M$	\longrightarrow	$S_8 + M$	† Need low and high pressure limits and their T dependence					
SH + H	\longrightarrow	$H_2 + S$	Some data exist; need accurate values and T dependence					
SH + H + M	\longrightarrow	$H_2S + M$	Need low and high pressure limits and T dependence					
$SH + S_3$	\longrightarrow	$HS_2 + S_2$	Need data					
$SH + S_4$	\longrightarrow	$HS_2 + S_3$	Need data					
SH + SH	\longrightarrow	H ₂ S + S † Some data exist; need accurate values and T depende						
$SH + HS_2$	\longrightarrow	$H_2S + S_2$	† Sendt et al. (2002); need extension to lower T					
$SH + H_2S_2$	\longrightarrow	$H_2S + HS_2$	Sendt et al. (2002); need extension to lower T					
SH + CS	\longrightarrow	$CS_2 + H$	† Alzueta et al. (2019); need confirmation and T dependence					
SH + HCS	\longrightarrow	$H_2S + CS$	Need data					
SH + OCS	\longrightarrow	$CO + HS_2$	† Need data and T dependence					
$HS_2 + H$	\longrightarrow	SH + SH	Sendt et al. (2002); need confirmation					
$HS_2 + H$	\longrightarrow	$H_2 + S_2$	Sendt et al. (2002); need extension to lower T					
$HS_2 + H$	\longrightarrow	$H_2S + S$	Sendt et al. (2002); need extension to lower T					
$HS_2 + HS_2$	\longrightarrow	$H_2S_2 + S_2$	Sendt et al. (2002); need extension to lower T					
$HS_2 + CS$	\longrightarrow	$CS_2 + SH$	Need data and T dependence					
CS + SO	\longrightarrow	$CO + S_2$	Need data and T dependence					
CS + SO	\longrightarrow	OCS + S	Need data and T dependence					
HOSO + H	\longrightarrow	products	Need data and product branching ratios					
HOSO + O	\longrightarrow	products	Need data and product branching ratios					
HOSO + OH	\longrightarrow	products	Need data and product branching ratios					
HOSO + S	\longrightarrow	products	Need data and product branching ratios					
HOSO + SH	\longrightarrow	products	Need data and product branching ratios					
$S_2O + H$	\longrightarrow	SO + OH	Need data					

 $[^]a$ M represents any third body such as the dominant background gas. b † represents particularly pressing need.

Table 4. Sulfur Reaction Rate Coefficient Data Needed for Exoplanet Studies

Many
reactions
involving
C-S
bond

Read	$ction^a$		Notes^b				
$S + S_3$	\longrightarrow	$S_2 + S_2$	Need data				
$S + S_4$	\longrightarrow	$S_2 + S_3$	Need data				
S + SH	\longrightarrow	$S_2 + H$	Some data exist; need accurate values and T dependence				
$S + HS_2$	\longrightarrow	$S_2 + SH$	Sendt et al. (2002); need extension to lower & higher T				
S + CO + M	\longrightarrow	OCS + M	† Need low and high pressure limits and their T dependence				
S + CS + M	\longrightarrow	$CS_2 + M$	† Need low and high pressure limits and their T dependence				
S + HCS	\longrightarrow	$CS_2 + H$	† Alzueta et al. (2019) estimate; need confirmation				
$S_2 + H + M$	\longrightarrow	$HS_2 + M$	Sendt et al. (2002); need confirmation and extension to lower T				
$S_2 + S_2 + M$	\longrightarrow	$S_4 + M$	† Some data exist; need accurate values and T dependence				
$S_4 + S_4 + M$	\longrightarrow	$S_8 + M$	† Need low and high pressure limits and their T dependence				
SH + H	\longrightarrow	$H_2 + S$	Some data exist; need accurate values and T dependence				
SH + H + M	\longrightarrow	$H_2S + M$	Need low and high pressure limits and T dependence				
$SH + S_3$	\longrightarrow	$HS_2 + S_2$	Need data				
$SH + S_4$	\longrightarrow	$HS_2 + S_3$	Need data				
SH + SH	\longrightarrow	$H_2S + S$	† Some data exist; need accurate values and T dependence				
$SH + HS_2$	\longrightarrow	$H_2S + S_2$	† Sendt et al. (2002); need extension to lower T				
$SH + H_2S_2$	\longrightarrow	$H_2S + HS_2$	Sendt et al. (2002); need extension to lower T				
SH + CS	\longrightarrow	$CS_2 + H$	† Alzueta et al. (2019); need confirmation and T dependence				
SH + HCS	\longrightarrow	$H_2S + CS$	Need data				
SH + OCS	\longrightarrow	$CO + HS_2$	† Need data and T dependence				
$HS_2 + H$	\longrightarrow	SH + SH	Sendt et al. (2002); need confirmation				
$HS_2 + H$	\longrightarrow	$H_2 + S_2$	Sendt et al. (2002); need extension to lower T				
$HS_2 + H$	\longrightarrow	$H_2S + S$	Sendt et al. (2002); need extension to lower T				
$HS_2 + HS_2$	\longrightarrow	$H_2S_2 + S_2$	Sendt et al. (2002); need extension to lower T				
$HS_2 + CS$	\longrightarrow	$CS_2 + SH$	Need data and T dependence				
CS + SO	\longrightarrow	$CO + S_2$	Need data and T dependence				
CS + SO	\longrightarrow	OCS + S	Need data and T dependence				
HOSO + H	\longrightarrow	products	Need data and product branching ratios				
HOSO + O	\longrightarrow	products	Need data and product branching ratios				
HOSO + OH	\longrightarrow	products	Need data and product branching ratios				
HOSO + S	\longrightarrow	products	Need data and product branching ratios				
HOSO + SH	\longrightarrow	products	Need data and product branching ratios				
$S_2O + H$	\longrightarrow	SO + OH	Need data				

 $[^]a$ M represents any third body such as the dominant background gas. b † represents particularly pressing need.

S chemistry is affected by C chemistry, and one of the key C species in giant planet atmospheres is CH₄

Why care about CH₄?

- CH₄ is a proxy for metallicity for the solar system giants
- CH₄ is a haze precursor
- CH₄ depletion as a proxy for the deep atmosphere temperature

- CH₄ holds most carbon at low temperatures, while CO dominates at high temperatures
- But: CH₄-CO transition is smooth

Atreya+18, Welbanks+2019, Sing+2024, JWST GO-3557

Baeyens+2022

Baeyens+2022

Baeyens+2022

Lessons from the solar system:

Phosphine in Jupiter's Great Red Spot

- Excess in PH₃ and aerosols coincides with still unidentified red chromophore
- Aerosols shield PH₃
 from UV in this
 long-lived anticyclone

CH₄ depletion due to: Carbon-sulphur chemistry

Carbon-sulphur chemistry depletes CH₄ & does it differently in different chemical networks. E.g.:

CH₄ depletion due to: Carbon-sulphur chemistry

Carbon-sulphur chemistry depletes CH₄ & does it differently in different chemical networks. E.g.:

Aside:

Families of chemical networks for giant planets

Last updated	С	Н	Ο	Ν	S	Р	CI	Model	Species	Notes
Moses+2013	V	V	V	V	X	X	X	KINETICS	92	originally developed for solar system
Hu+2015	V	V	V	V	V	X	X	MEAC	111	originally developed for rocky exoplanets
Gao+2016, Johnson+2022	V	V	V	V	V	×	X	EPACRIS	varies	computer-aided chemical reaction network generator
Hobbs2021	V	V	V	V	V	X	X	LEVI	a lot	STAND
Tsai+2021	V	V	V	V	V	X	X	VULCAN	96	open source, widely used
Tsai+2022	V	V	V	V	X	X	X	Exo-FMS	12	MINI-CHEM
Lee+2024	X	V	V	X	X	V	X	VULCAN	32	phosphorus
Wogan+2024	V	V	V	V	V	X	V	Photochem	111	Zahnle, chlorine
Veillet+2025	V	V	V	V	V	X	X	FRECKLL	226	verified against combustion experiments

New laboratory & ab initio data are needed!

CH₄ depletion due to: **Cloud formation**

- Kinetic cloud formation model
- Cycling between surface reactions of cloud bulk growth:

Depletion via:

CH₄ +
$$\mathbf{H} \rightarrow \text{CH}_3 + \text{H}_2$$

CH₃ + $\mathbf{H} \rightarrow \text{CH}_2 + \text{H}_2$
CH₂ + $\mathbf{H} \rightarrow \text{CH} + \text{H}_2$
CH + H₂O \rightarrow H₂CO + H

CH₄ changes largest at <10⁻³ bar and ~1300 K

CH₄ depletion due to: Cloud formation

Lessons from the solar system:

Storm-driven NH₃ depletion on Jupiter

 Observation: NH₃ depletion correlates with enhanced lightning activity

From a press release:

"Imke and I both were like, 'There's no way in the world this is true," said Moeckel, ... "So many things have to come together to actually explain this, it seems so exotic. I basically spent three years trying to prove this wrong. And I couldn't prove it wrong."

Lessons from the solar system:

Storm-driven NH₃ depletion on Jupiter

- Observation: NH₃ depletion correlates with enhanced lightning activity
- Theory: NH₃ vapour helps melt H₂O ice crystals at low temperatures (-85C), forming H₂O-NH₃ mushballs
 - net effect: downward transport of NH₃

Likely happens on all solar and colder extrasolar giants!

CH₄ depletion due to:

Transport-induced quenching

CH₄ depletion due to:

Transport-induced quenching

CH₄ depletion due to:

Transport-induced quenching

Tsai+2023

CH₄ depletion due to: Transport-induced quenching

GCM with disequilibrium thermochemistry

CH₄ depletion due to: Transport-induced quenching **GCM** with disequilibrium **Temperature Zonal wind** thermochemistry 90° 102 Kinetics [M/H]=0 ₹ 10³ Chemical scheme: ---- Equilibrium 105 105 — Kinetics 10^{3} Metallicity: [M/H]=0 Latitude Pressure [Pa] 104 -- [M/H]=1 Meridional mean: — Morning Evening All latitudes: quench Morning -90° -90° 10x Evening 90° 10² 107 level Kinetics [M/H]=1 10³ - 10³ 10² J 105 10³ atitude 9 Pressure [Pa] 105 106 -90° 600 800 1000 1200 1400 1600 1800 2000 -6.0 -4.5 -3.0 -1.5 0.0 1.5 3.0 4.5 6.0 10-11.0010-9.71 10-8.43 10-7.14 10-5.86 10-4.57 10-3.29 10-2.00 Temperature [K] Zonal wind speed [km s⁻¹] 107 CH₄ mole fraction 10^{-12} 10-10 10^{-8} 10^{-6} 10^{-4} 10^{-2} Zamyatina+2024 CH₄ mole fraction

Summary of:

Transport-induced quenching

- Quenching homogenisation of gas-phase composition by wind
- CH₄ is readily homogenised
- CH₄ is enhanced or depleted depending on where it quenches
 - CH₄ could be more depleted if it quenches inside the region of fast equatorial winds

Implication:

 Be careful when using CH₄ depletion as a deep atmosphere thermometer

Summary

- Ever increasing wealth of chemical species detections allows for a detailed study of atmospheric processes
 - Keep moving from "just detections" to processes
- Keep increasing the complexity of disequilibrium chemistry models
 - "Atmospheres are not simple, one-dimensional constructs", they are a highly coupled but beautiful mess
- Sulphur story is unraveling and there is more to come
- Keep reporting non-detections
 - CH₄ non-detections could be caused by photochemistry, C-S coupling, cloud formation, transport-induced quenching likely all together and more
- Keep looking at the Solar System when interpreting extrasolar observations
- Need more chemical kinetics data