Applying known chemical kinetics data to model atmospheres of extrasolar planets

Maria Zamyatina^{1*}, Eric Hébrard¹, Nathan J. Mayne¹, Robert J. Ridgway¹ and Exeter Exoplanet Theory Group (http://exoclimatology.com)

Met Office ¹Department of Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, UK

* m.zamyatina@exeter.ac.uk m zamyatina

Introduction

- We apply known chemical kinetics data to **model** atmospheres of extrasolar planets (exoplanets).
- Such modelling is topical as it **helps interpret** recently released and upcoming observations with the JWST, a new large infrared space telescope.
- We hope to spark interest in an collaboration between atmospheric chemists and astronomers.

• The Met Office Unified Model (UM), 3D coupled hydrodynamics-radiation-chemistry model, was adapted to model tidally-locked exoplanets, and here we present results from this model.

H₂-He-dominated atmospheres

Zamyatina et al. (under review in MNRAS)

- 1. Hot Jupiters like HD 189733b are Jupiter-3. Their upper atmosphere ($<2\times10^5$ Pa) has size gas giant exoplanets, whose primordial atmospheres made mostly of H_2 , He and some $H_2O, CO, CO_2, CH_4, N_2, NH_3$ and other gases, are heated by a star up to 2200 K.
- high enough pressures and temperatures to be at a chemical equilibrium.

pressures and temperatures low enough and winds fast enough ($\approx 6 \,\mathrm{km \, s^{-1}}$) for chemical reactions not to have enough energy or time to finish, causing a **chemical disequilibrium**.

2. Their deep atmosphere $(>2\times10^5 \text{ Pa})$ has 4. Wind-driven disequilibrium (quenching) usually enhances chemical species abundances above those at equilibrium.

follows the pressure-temperature structure, so there is less CH_4 at higher temperatures^{*} and vice versa.

- *Substellar point is at 180° longitude.

7. Quenching homogenises CH_4 distribution, and this effect is detectable with the JWST in the case of HD 189733b, if it's atmosphere is cloud- and haze-free.

N_2-O_2 -dominated atmospheres

1. Proxima Centauri b is an Earth-size exoplanet orbiting an M-dwarf star.

- **2.** Atmospheric composition of Proxima Centauri b is not yet known, but if it was N_2 - O_2 -dominated, O_3 vertical profiles might look like this.
- 3. Nightside^{*} O_3 distribution would be dominated by two cyclonic Rossby gyres, inducing O_3 loss via NO_x titration.
 - *Substellar point is at 0° longitude.

4. But O_3 would be hard to detect in such atmospheres even with the JWST. Maria Zamyatina thanks the IGAC for providing a travel grant.