

Impact of alkyl nitrate chemistry on tropospheric ozone

Maria Zamyatina^{1*}, C.E. Reeves¹, A.T. Archibald², P.T. Griffiths², M.O. Köhler¹

¹School of Environmental Sciences, University of East Anglia, UK ²NCAS-Climate, Department of Chemistry, University of Cambridge, UK

* m.zamyatina@uea.ac.uk chemeteomary

Introduction

Alkyl nitrates (RONO₂) are directly emitted or photochemically produced from the oxidation of hydrocarbons in the presence of nitrogen oxide (NO). Their formation terminates the tropospheric ozone (O_3) production by temporarily storing the active form of nitrogen. Due to a relatively long lifetime of a few days to a few months, **RONO**₂ can be destroyed far away from their sources by photolysis or hydroxyl radical (OH) oxidation, releasing nitrogen dioxide (NO_2) to the local atmosphere and altering O_3 con-

Few studies have investigated the impact of $RONO_2$ chemistry on O_3 using a global chemistry-climate model. Here we extend the tropospheric chemical mechanism (CheT) of the United Kingdom Chemistry and Aerosols (UKCA) model to include of C_4 - C_5 alkanes (RH) and C_2 - C_5 **RONO₂**. We (1) test the new mechanism in a box model using the Master Chemical Mechanism (MCM) as a benchmark, (2) validate the new chemistry against NASA ATom-2 [1], (3)

centrations.

\rightarrow RONO₂

evaluate the impact of C_1 - C_5 RONO₂ on O_3 .

UKCA vs ATom-2

References

- Prather et al. Global atmospheric chemistry Which air matters. ACP, 17(14):9081-9102, 2017. Newland et al. Changes to the chemical state of the [2]
- Northern Hemisphere atmosphere during the second half of the twentieth century. ACP, 17(13):8269– 8283, 2017.

Conclusion

- Updating chemical kinetics in UKCA has a statistically significantly impact on O_3 .
- UKCA captures winter C_4 - C_5 RONO₂/RH order of magnitude.
- $RONO_2$ impact on O_3 in a box model is small.

Future work

- Implement interactive C_4 - C_5 RH and C_2 - C_5 $RONO_2$ chemistry into UKCA.
- Run UKCA with and without $RONO_2$ and evaluate differences in O_3 , HO_x and NO_x burdens and distribution.