Impact of C;-C; alkyl nitrate chemistry on tropospheric ozone - a box modelling study
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1 Introduction

Alkyl nitrates (RONO,) are a group of organic trace gases that
are present in the atmosphere as a result of direct emissions and
secondary photochemical production from the oxidation of hydro-
carbons in the presence of nitrogen oxide (NO). Their formation
terminates the tropospheric ozone (O;) production by temporar-
ily storing the active form of nitrogen. Due to a relatively long
lifetime of a few days to a few months, RONO, can be de-
stroyed far away their sources by photolysis or hydroxyl radi-
cal (OH) oxidation, releasing nitrogen dioxide (NO,) to the lo-
cal atmosphere. This might influence O; concentrations on re-
gional levels and alter the oxidative capacity of the atmosphere.
In spite of their importance, there

03+th are few studies that investigate
RH the impact of RONO, chem-

l istry on tropospheric O; using a

l+02 global chemistry-climate model.

RO NO<¢.. ,~»0s Here we extend the tropospheric

'f“”r 92 chemical mechanism (CheT) of the

’ United Kingdom Chemistry and

ROOH —— RO - Aerosols (UKCA) model to include

the chemistry of C,-Cs alkanes
(RH) and C,-Cs RONO,. Betore
implementation, we test the new mechanism in a box model in a range
of NO,-RH conditions using the Master Chemical Mechanism (MCM)
as a benchmark and evaluate the impact of C;-C5 RONO, on Os;.

RONO,

2 Box model setup

Two types of box model simulations are performed.

2.1 Steady state

Steady state O; concentration
100 1

e “‘Steady state” simulations
are run until a steady
state O; concentration is
reached. It is accomplished
by keeping concentrations of
the species driving O, chem-
istry, NO, and RH, constant
1n time.
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e The mechanisms are com-
pared in the NO,-RH chem- | | | | | | |
ical space USing iSOplethS 0.001 0.01 0.1 NDXlepb 10 100 1000
plots of 24 hour average con-
centrations of species of in- Figure 1: Isopleths of O; steady state
terest. concentrations. Dots show individual

box model runs.
Initialised variable species O5, NO
Fixed species™ CO, C,-C4 alkanes
Emissions NO, NO, at a ratio computed online
Deposition 03, H202, HNO3
*Apart from N,, O, and H,O

2.2 Initial pulse

¢ “Initial pulse” simulations imitate air being transported away
from an emission source and evolving purely due to chemical
interactions.

e Initialised variable species: 03, NO, CO, Cl—C5 alkanes.

3 Updating the CheT inorganic and C;-C;
alkane chemistry

CheT COC3_orig - MCM_COC3 orig CheT _COC3 revised - MCM_COC3 _revised
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Figure 2: Differences between steady state runs with the MCM and
CheT 1norganic and C;—C5; RH chemistry betfore (two left columns)
and after (two right columns) revision.

e The original CheT mechanism includes representation of the inor-
ganic, C;—C; RH and 1soprene chemistry. For simplicity, the latter
1s excluded from the CheT here.

e Before adding new chemistry to the CheT, we suppress differences
between the original CheT and an analogous subset from the
MCM by unifying and updating reaction rate coefficients.

4 Adding C4-Cs alkane chemistry

CheT_C0OC5 - MCM _ CUCS
MCM_COC5 CheT _COC5 A
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Figure 3: Differences in O5, OH and HO, between steady state runs
with the MCM and CheT inorganic and C, —Cs RH chemistry.

e Proposed version of the C;—Cs alkane chemistry requires addition
of 20 species and 58 reactions. They describe the formation of per-
oxy radicals from alkane oxidation by OH, their secondary produc-
tion from peroxides and interactions with NO and NO,. No new
aldehydes or ketones are included.

e O;, OH and HO, concentrations are now overestimated by the
CheT in the mid-range NO, and high RH conditions.

S Impact of C{-C; alkyl nitrate chemistry

5.1 Steady state
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Figure 4: Ditferences in O5, OH and HO, between CheT steady state
runs with and without C; —Cs RONO, chemuistry.

e Methyl (C,) nitrate 1s present in the original CheT mech-
anism. Its chemistry 1s excluded from the analysis in sec-
tions 3 and 4, but 1s included here.

e Proposed version of the C,—Cs alkyl nitrate chemistry
requires addition of 11 species, 33 new reactions and
modification of 3 original reactions. They describe
RONO, formation and destruction by photolysis and OH
oxidation.

e Inclusion of the C,-C; alkyl nitrate chemistry lowers
O;, OH and HO, concentrations by 2% in the major-
ity of NO,-RH conditions in a box model.

e Reduction is slightly bigger in a number of runs with
mid-range NO, and high RH, where the highest ozone
concentrations are generated.

Conclusion: C;—C; RONQO, chemistry lowers steady

state O;, OH and HQO, concentrations by 2% in almost
all NO_-RH conditions examined in a box model.

Forthcoming research

e Implement proposed here version of C,—Cs RH and C,-
Cs; RONO, chemistry into the UKCA.

e Run UKCA with and without RONO, for 10 years.

e Compare modelling results with observational data using
ratios of RONO, to their parent alkanes as a metric.

e Evaluate differences in O;, HO, and NO, burdens and
distribution.
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5.2 Initial pulse

all runs without RONO,
all runs with RONO,

RH 76 ppbC; NO 500 ppt
RH 76 ppbC; NO 500 ppt
RH 76 ppbC; NO 8 ppb
RH 76 ppbC; NO 8 ppb
RH 76 ppbC; NO 16 ppb
RH 76 ppbC; NO 16 ppb
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Figure 5: O; production in initial pulse runs with the extended CheT
mechanism.
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Figure 6: O; and NOy mixing ratios (left column) and O; production
(middle and right column) in the runs highlighted in Figure 5.
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e In O, production regime, slower NO consumption due
to inclusion of RONQO, chemistry results in higher NO
concentration that triggers a more effective NO titration
during the day.

ROOH «~

e Maximum contribution of > "RONO, production and loss
to other fluxes in all NO,-RH conditions simulated with
the extended CheT mechanism in a box model:

—OH (<0.5%) and NO (<4%) loss;

—-HO, (<0.5%) and NO, (up to ~5%) production;

- RO, recycling (production <1.5%, loss up to ~=5%).
Conclusion: C,-C; RONQO, chemistry slows down NO
to NO, conversion after initial burst of pollution and

leads to smaller O; concentrations in all NO_-RH con-
ditions examined in a box model.
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